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Abstract
We examine by means of first-principles calculations the bcc-like (bcc: body centered cubic) to
ω-like phase transformations in Ti–Al alloys with Nb additions at finite temperature. To
simulate the alloy we use different discrete atomic configurations in a six atom unit cell of the
stoichiometry Ti3Al2Nb. Calculated ground state energies show an instability in the ternary
Ti3Al2Nb alloy against the ω structure type atomic displacement. To better understand the role
of entropy in the stability/instability of these systems, the first-principles calculations are
extended to finite temperature by including various contributions to the free energy. In
particular, the vibrational free energy is calculated within a quasiharmonic approximation. It is
shown that the bcc structure is stabilized by the contribution of the low energy modes to the
lattice entropy against ω type atomic displacements. We find that configurational entropy plays
a major role in the ω to B82 transformation. Calculated lattice parameters and transition
temperatures are found to be in excellent agreement with experiment.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Metastable states play an important role in the mechanisms
for solid–solid displacive phase transformations (e.g., marten-
sitic) [1, 2]. They involve the cooperative movement of atoms
over small distances that are fractions of lattice translation vec-
tors. In contrast, diffusion-controlled nucleation and growth
transformations occur by the transport of atoms over much
larger distances and longer times. Displacive transformations
usually occur at lower temperatures than those involving dif-
fusion, where there is less thermal energy for diffusion and re-
ordering of the lattice, or due to rapid quenching where there is
not enough time for diffusion processes to establish true equi-
librium. They involve spontaneous distortions (strains) of the
original unit cell (or a supercell of these) into a less symmetric
structure with additional small movement of the atoms within
the unit cell or supercell (these are usually called shuffles),
as the system attempts to lower its free energy as best it can
without the available thermal energy and kinetic driving forces
to achieve true equilibrium. Displacive transformations have

a significance that extends beyond their own particular study,
since they can be viewed as a simple paradigm for more gen-
eral complexity in materials.

While a number of zero-temperature first-principles
studies have been done on these types of systems, less attention
has been paid to the more difficult task of determining the
effects of entropy on these transformations. Since almost all
phase transformations occur at finite temperature, it is very
important to consider the effects of thermal energy and whether
they modify the results of zero-temperature band-structure
calculations. Interest in developing such methods has, in
particular, been appreciable for substitutional alloys [3].

In this regard the formation of the ω-phase [4] in elements
(e.g., Ti) and alloys (e.g., Ti–Al–Nb and Ti–V), which was
first reported by Frost et al [5] in 1954, forms almost a
model system in which to study these types of effects because
of its simplicity. These materials also have considerable
technological importance, since Ti3Al and TiAl alloys with
Nb additions, in particular, have received a lot of attention
as possible candidates in the search for light-weight materials
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with the high temperature strength and low temperature
ductility properties that are needed for aerospace applications.
It should be noted that in β-Ti alloys [6] internal friction studies
support a mechanism whereby the transformation is displacive
rather than diffusional.

Among the Ti–Al alloys with Nb additions, alloys with
a chemical composition near the stoichiometry of Ti4Al3Nb
has been especially well characterized experimentally [7–13].
As the material is quenched and aged a series of ω-like
transformations occur involving (i) B2 → ω′′, (ii) ω′′ → B82,
and (iii) B2 → B82. These will be described in greater detail
below.

In this paper, we use first-principles calculations to
investigate these transformations at finite temperature. Since
we do no configurational averaging, we are forced to simulate
the properties of the alloy through using specific discrete
configurations. Since most of our calculations are done with
the smallest reasonable unit cell (6 atoms per unit cell), we
have examined configurations involving the alloy Ti3Al2Nb
instead of Ti4Al3Nb. This alloy has the same Ti concentration
as in the experimental work for Ti4Al3Nb [7, 8] (50%), but
has a higher concentration of Nb at the expense of Al (16.7%
instead of 12.5% Nb). Examining 6 atom cells with these
alloy concentrations we are able to calculate the vibrational
free energy within the quasiharmonic approximation and show
that the vibrational entropy (as in transition metals) stabilizes
the high temperature B2 phase. Also, the importance of
the configurational entropy on the formation of the B82

phase in the ω′′ → B82 transformation is discussed. We
show that the theoretically calculated lattice parameters and
transition temperatures are not affected by the enhanced Nb
concentration that we used.

2. Crystal structure description

To understand the formation of the ω-type structures, it is
useful to consider the atomic structure of the bcc lattice along
the [111] direction (figure 1). In this direction the lattice
appears as a series of three equally spaced planes of atoms that
repeat periodically. The ω-type structures form out of the bcc-
type lattices by a collapse of every second and third plane of the
bcc lattice toward each other along the [111] direction while the
distance between the first plane and its periodic replicas (e.g.,
the fourth plane) remains fixed. This is equivalent to a 2/3
longitudinal displacement phonon along the [111] direction.
The ω-type structure [4] can involve either a partial or a full
collapse of the second and third planes, called respectively
an ‘incomplete’ (trigonal, structure type C6) or ‘complete’
(hexagonal, structure type C32) transformation3. When fully
collapsed the ω crystal structure has only two periodically
replicated planes.

When alloys containing different types of elements are
formed in this crystal structure, the overall symmetry of the
lattice, of course, depends on the placement of the atoms within
the unit cell (or supercell) of the ω-type units. In alloys, some
sites can also sometimes be occupied by a randomly disordered

3 The NRL web site http://cst-www.nrl.navy.mil/lattice/ gives a useful
description and pictures of these various lattices.
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Figure 1. (a) Stacking of the (111) planes of bcc structure,
(b) trigonal ω-phase (partial collapse of the planes), (c) ideal ω-phase
(complete collapse of the planes), (d) B2 crystal structure which is
doubled along the c-axis, (e) trigonal ω′-phase (partial collapse of the
planes), (f) the B82 structure.

mixture of atoms from two or more different types of elements.
This will not change the symmetry if completely disordered.
Also, once the collapse of the second and third planes begin
(figure 1), the original cubic symmetry is lost and the crystal
structure can distort along the [111] direction to change the
c/a ratio (the lattice constant a describing unit cell within
the hexagonal-like planes within each plane and the lattice
constant c the repeat distance of the unit cell along the original
[111] direction).

The trigonal C6 incomplete ω-phase (shown in figure 1) is
based on the P 3̄m1 space group (International Table No. 164).
Its prototype is CdI2 and has 3 atoms per unit cell: (1a) 0
0 0 and (2d) 1/3 2/3 1/2 + z and 2/3 1/3 1/2 − z. In
the CdI2 structure the Cd atoms occupy the (1a) Wyckoff
position and the I atoms the (2d) positions. When z = 0, this
crystal structure transforms into the hexagonal C32 complete
ω structure (see below). When z = 1/6, it is equivalent to the
bcc structure for c/a = √

3/8 and a single atom type.
The hexagonal C32 complete ω-phase is based on the

P6/mmm space group (International Table No. 191). Its
prototype is AlB2 and has 3 atoms per unit cell: (1a) 0 0 0
and (2d) 1/3 2/3 1/2 and 2/3 1/3 1/2. The Al atoms occupy
the (1a) Wyckoff position and the B atoms the (2d) positions.

A closely related phase is the B82 crystal structure
(figure 1). This has a hexagonal ordered ω-like structure that is
doubled along the c-axis, with two molecular units per unit
cell. It has a P63/mmc space group (International Table
No. 194). Its prototype is Ni2In and has 6 atoms per unit cell:
(2a) 0 0 0 and 0 0 1/2, (2c) 1/3 2/3 1/4 and 2/3 1/3 3/4,
and (2d) 1/3 2/3 3/4 and 2/3 1/3 1/4. The Ni atoms occupy
the (2a) and (2d) Wyckoff positions and the In atoms the (2d)
positions.

As noted by Bendersky et al [7], all of the relevant
structures related to the ω-phases can be indexed on a P 3̄m1
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space group (International Table No. 164), because it is a
subgroup of all the others. We will follow this example in this
paper, since all of the structures we examine can similarly be
based upon this structure. In this general structure, following
Bendersky et al [7], we have a doubled unit cell along the
z-direction (figure 1) with 6 atoms per unit cell: (1a) 0 0 0,
(1b) 0 0 1/2, (2d1) 1/3 2/3 z1 and 2/3 1/3 1 − z1, and (2d2)
2/3 1/3 z2 and 2/3 1/3 1 − z2. For our purposes we can use a
single z and set (2d1) 1/3 2/3 1/6+ z and 2/3 1/3 5/6− z and
(2d2) 2/3 1/3 1/3− z and 1/3 2/3 2/3+ z. This is arranged so
that when z = 0 we have equally spaced planes (like bcc along
the [111] direction for a single-element material), and when
z = 1/12 the ω structure is fully collapsed with planes at 0,
1/4, 1/2, and 3/4. The different structures arise from different
elements (or disordered mixtures of elements) occupying the
different Wyckoff positions.

3. Phase transformation description

The Ti–Al–Nb alloy system has a ductile disordered bcc
or B2 (CsCl) phase over a wide range of composition
at high temperatures. At lower temperatures ω-type and
related B82 phases form. Depending on the morphology and
microstructure of these phases they can either cause brittleness
or help to strengthen the material [4]. In this class of materials
both diffusion and displacement mechanisms can play a role
in the formation of the various phases, as the material is either
rapidly quenched or thermally equilibrated as it goes through
different materials processes.

There have been a number of investigations of Ti3Al
alloys with Nb substitutions of up to 30 at.% for Ti. At high
temperatures there is a bcc or B2 phase over this composition
range. When quenching alloys at higher Nb concentrations
(5–17 at.%), the bcc phase is found to order chemically to
the B2 structure and then to age to a B82 structure. A
particularly detailed study was done by Benersky et al [7] with
further investigations by Sadi and Servant [8] for alloys with
a chemical composition near the stoichiometry of Ti4Al3Nb.
They found several phases appearing during cooling at various
rates from the high temperature bcc phase field. These are
the B2, L10, D019, and ω-type phase. The formation of
a trigonal (incomplete) athermal ω-phase, called ω′′ were
reported by several experiments [7–13]; note that we agree
with the arguments by de Fontaine and collaborators [14, 15]
that there is no physical basis for differentiating between
athermal and thermal ω-type phases, and we will treat both
as the same. The ω′′ structure is a partially-collapsed ω-phase
with different site occupancies than what would occur for a
direct ‘ω-collapse’ out of the disordered bcc alloy. Hence the
sequence of phase transformations found by Bendersky et al
[7] appears to be: chemically disordered bcc (A2) → ordered
B2 → ω′′ → isothermal ω-phase (B82).

A direct transformation from the B2(Pm3̄m) to the
B82(P63/mmc) structure would be strongly first-order due
to symmetry, since P63/mmc is not a subgroup of Pm3̄m.
Instead, the observed path, B2 → ω′′ → B82, traverses a
state of minimum symmetry through the ω′′ (P 3̄m1) that is
a subgroup of both Pm3̄m and P63/mmc. The formation

Nb AlTi

z+1/6
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Figure 2. (Color online) (a) stacking of the (111) planes of
underlying bcc Ti3Al2Nb structure (BOT) for z = 0, (b) trigonal
ω′′-phase (partial collapse of the planes) for 0 < z < 1/12, (c) ω
structure (full collapse of the planes) for z = 1/12.

of ω′′ as an intermediate metastable phase thus provides a
continuous structural path for the alloy to accomplish the B2
to B82 transition.

In the alloys the structure is only fully determined when
the site occupancies are specified. The sites can be occupied
by a single element or by disordered mixtures of several
elements. In the B2 or bcc-like phase, the occupancy reported
by Banerjee et al [16] showed that Ti tends to occupy one
site while Al and Nb tend to occupy the other site. The
measured site occupancies of the ω′′-phase indicate that the
phase transformation first involve a change in chemical order
with a transfer of Nb atoms out of collapsing planes (figure 2)
into stationary ones [7]. It is suggested that the absence of the
Nb atoms from the collapsing planes is because of the strong
interaction between Ti and Al atoms (due to considerably
large negative heat of mixing between them). Therefore,
transition-metal–Al interactions are the origin of the both the
A2 → B2 ordering and the ω-phase formation in the B2
phase of TiAl–X (X = Nb, V) system [7, 19, 20]. In this
paper we do not examine the chemical ordering aspects of
this phase transformation, but instead focus on the displacive
transformation of the lowest energy configuration.

4. Methodology

The present calculations have been carried out using first-
principles density-functional packages, VASP [21–24], within
the generalized gradient approximation to the exchange–
correlation potential [25]. The VASP calculations use
a plane-wave basis set and ultrasoft Vanderbilt type
pseudopotentials [26]. In the VASP approach, the solution
of the generalized self-consistent Kohn–Sham equations are
calculated using an efficient matrix-diagonalization routine
based on sequential band-by-band residual minimization
method and Pulay-like charge density mixing [27]. We used a
plane-wave basis cutoff at 321 eV for all structures. Electronic
degrees of freedom were optimized with a conjugate gradient
algorithm, and both cell constants and ionic positions are fully
relaxed. The crystal is represented by 6 or 12 atom periodic
cells. The 7 × 7 × 5 and 7 × 7 × 3 Monkhorst–Pack [28]

3
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mesh are used to sample the Brillouin zone of 6 and 12 atom
cells, respectively. The dynamical matrix calculations were
done using force-constant method in a 108 atoms cell with k-
point sampling of 2 × 2 × 2.

The eigenvalues of the dynamical matrix are the normal-
mode frequencies ωs of the system. The knowledge of all
normal modes of the supercell also allows the construction
of the phonon density g(ω). This function is obtained by
evaluating the dynamical matrix at 10 000 k points in the
Brillouin zone of the supercell. Once g(ω) is known, the
Helmholtz vibrational free energy Fvib is straightforward to
calculate [29–31].

5. T = 0 results

In order to understand the properties of an alloy within a
specific 6 atom unit cell from first-principles calculations, it
is necessary to specify the placement of each type of atom
(element) within this unit cell. The various unit cells and
chemical orderings that we have considered are shown in
figure 2. We have constrained the c/a ratio to be

√
6/2

(the ideal value). For this c/a the material can continuously
transform into the bcc or B2 structures when the chemical order
is set appropriately. The lattice constant a can be determined
by minimizing the total energy.

After studying all the possible arrangements of atoms in
the 6 atom unit cell, we find that that the atomic configuration
in figure 2(a) has the lowest energy. For convenience, from
now on, the structure shown in figure 2(a) will be referred to as
the body center orthogonal ternary (BOT) structure (note that
this is the bcc-like equally spaced plane version of the crystal
structure with z = 0). In terms of the general description
of the crystal structure given in section 2, Ti atoms occupy
the Wyckoff sites (1a) and (2d2), the Al atoms the site (2d1),
and the Nb atoms the site (1b). The overall stoichiometry
is Ti3Al2Nb, which has the same Ti concentration as in the
experimental work for Ti4Al3Nb [7, 8] (50%), but has a higher
concentration of Nb at the expense of Al (16.7% instead
of 12.5% Nb). Our BOT structure is in agreement with
experiment [16] in that Ti atoms tends to occupy one site while
Al and Nb tend to occupy the other sites of the B2 structure.
Note that the B2 structure has a site occupancy with the (1a)
and (2d2) sites being filled with one type of atom and the (1b)
and (2d1) sites with atoms of the other type.

After the overall unit cell dimensions and atomic
configurations were determined, we then varied the positions
of the planes along (111)bcc and calculated the total energy
versus plane displacement, z (figure 2) (where z is a
dimensionless variable varying between 0 and 1/12 in terms of
c/a unit) (figure 3). The lattice with z = 0 corresponds to a bcc
structure. The complete ω-phase is formed when z = 1/12;
for the other values of z, the structures are the ‘incomplete’ ω-
phase (ω′′). Finally the structure parameters were optimized
around the minima of the energy (figure 3). Calculated
atomic parameters for BOT and ω′′ and their comparison with
experiment are shown in table 1. The calculated parameters are
in an excellent agreement with experiment.

0.0 0.2 0.4 0.6 0.8 1.0
Atomic displacement (12z)

ΔE
 (

m
eV

/a
to

m
)

–20

–16

–12

–8

–4

0

Figure 3. Calculated total energy as a function of atomic
displacement for the Ti3Al2Nb system.

Table 1. Calculated and experimental values for atomic parameters
of Ti3Al2Nb BOT and ω′′ structures. The experimental values for
BOT and ω′′ structures are taken from [8] and [10], respectively.

BOT (exp.) BOT (calc.) ω′′ (exp.) ω′′ (calc.)

a (Å) 3.224 3.229 4.555 4.609
c (Å) 5.542 5.479
z + 1/6 0 0 0.2245 0.2335

The instability of the BOT structure with respect to the
ω-type displacement is a consequence of the strong bonding
between the Ti and Al atoms. Pair-potential modeling
for the Ti3Al2Nb system [32] and first-principles studies of
transition metal aluminides [33, 34] indicate the existence of a
strong covalent bonding component, which makes the bonding
between Ti–Al atoms significantly stronger than between Ti–
Nb or Al–Al atoms. This statement is in agreement with the
results of the x-ray photoelectron spectroscopy (XPS) studies
of Ti–Al and Ti–Al–V alloys [35] that indicate charge transfer
from the Al sites towards the transition metal sites. The Ti–Al
bond is stronger at shorter distances, relative to their positions
in BOT structure. Therefore, one expects to see the instability
of the BOT structure toward the ω-phase. In this way, the Ti–Al
bond can reduce its energy.

Since the BOT structure is unstable at zero temperature
to an ω instability, this raises the question of why it is
experimentally found to be the stable structure at high
temperature? Entropy-driven structural phase transformations
have been found in a number of alloys [36, 37] besides
elements like titanium [38] and zirconium [39], which suggests
that the BOT structure of Ti3Al2Nb system can also be
stabilized by excess (vibrational) entropy at high temperature.
In section 6 we extend our studies to finite temperatures by
calculating the relevant thermodynamical potentials from first-
principles.

6. Finite temperature results

The thermodynamical quantity determining the phase stability
for fixed P and T (pressure and temperature of the system,

4
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respectively) is the Gibbs free energy G(P, T ). However,
in the case where all calculations are carried out near the
equilibrium volume (P ≈ 0), it becomes a good approximation
to use the Helmholtz free energy instead of the Gibbs free
energy. Since quasiharmonic phonon calculations (see below)
are performed at fixed volume, this approximation simplifies
the calculations. To determine the effects of entropy at
high temperatures, one must consider the different possible
contributions to the entropy such as electronic, vibrational, and
configurational.

The electronic contribution to the free energy depends
on the electronic density of states as a function of volume,
n(E, V ). The occupation of these states, given by the Fermi
distribution f (E, T ) = [e(E−Ef)/(KBT ) +1]−1, determines their
entropy [40]

Sel(T, V ) = −kB

∫
[ f ln f + (1 − f )ln(1 − f )]n(E, V ) dE

(1)
and hence the electronic contribution to the free energy
FE(T, V ) = −T Sel(T, V ). Although the electronic entropy
terms are not large, we include them in our calculations for
completeness.

The vibrational modes of the crystal are usually a much
more important contribution to the free energy of the system
than the electronic contribution. Significantly far below the
melting point (when the anharmonicities get very severe),
the vibrational free energy Fvib can be calculated within the
quasiharmonic approximation. This is similar to calculating
Fvib in the harmonic approximation, but retaining only the
implicit volume dependence through the frequencies as [41]

Fvib(T, V ) = 3kBT
∫

�

ln

{
2sinh

(
h̄ω

2kBT

)}
g(ω, V ) dω.

(2)
We have calculated the phonon density of states at a

few volumes and interpolated to get the volume dependence.
The quasiharmonic approximation accounts only partially
for the effects of the anharmonicity through the volume
dependence of the phonon spectra. However, this is often
a very good approximation at temperatures not too close to
the melting point [42, 43]. At very high temperatures or
very close to melting, to go beyond this approximation would
either require anharmonic expansions [44], which may not
converge, or self-consistent phonon theories [45, 46], which
would increase the complexity of the calculations by one or
several orders of magnitude. For this reason they are rarely
attempted [43, 47–49]. They are certainly beyond the scope of
this paper.

6.1. B2 → (athermal) ω′′ transformation

Figure 4 shows the difference between the Helmholtz free
energies of the BOT and ω′′ (or incomplete ω) structures.
Above 1336 K the bcc-like BOT structure is more stable than
ω′′-phase. The transmission electron microscopy analysis of
similar alloy concentration indicates that the decomposition of
the B2 phase occurs only below the 1373 K [7, 16] which is in
excellent agreement with the calculated transition temperature.

0 400 800 1200 1600
T (K)

ΔF
 (
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eV

/a
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m
)

FBOTF ω"

–10

–5

0
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15

20

Figure 4. The total free energy difference of BOT and ω′′-phase as a
function of temperature. Below 1336 K the ω′′-phase is more stable
than BOT. Note that the z used for the ω′′-phase is fixed to be the
same as the zero-temperature minimum energy structure
(Z + 1/6 = 0.2327).

In figure 5, the phonon density of states for BOT and ω′′ at
the predicted transition temperature is shown. The calculated
phonon density of states consists of two bands separated by a
gap for both structures. The Ti and Nb related modes are at
low and Al at high energies (frequencies). In BOT structures
phonons in both bands are shifted to the lower frequencies with
respect to the ω′′-phase. The high frequency modes are due to
the strong bonding between the Ti and Al atoms and change of
the nearest neighbors atoms with respect to the BOT structure.
Therefore, we support the model by Friedel [17] that the excess
entropy for the bcc phase is due to an overall lower phonon
spectrum, expected to scale with the number of neighbors. We
found small imaginary vibrational frequency for BOT structure
along [111] direction at 2/3 2/3 2/3 (figure 6). This is the
expected soft phonon for bcc to ω-phase transformation. First-
principles study of the bcc phase of transition metal elements
(TME) shows the similar instability in phonon dispersion along
[111] direction [18]. In general presence of the imaginary
frequencies indicates that the structure is dynamically unstable.
However, there is a major difference between the instability in
BOT system and the TME. We found a very small imaginary
frequency (less than 1% of the maximum frequency along
[111] direction) in a small region of the Brillouin zone. While,
calculated phonon dispersion for TME of imaginary phonons
are more than 50% of the calculated maximum frequencies and
in a much larger region of the Brillouin zone. Therefore, a free
energy calculation in TME within harmonic approximation is
less reliable [18] than BOT. The fact that phonon dispersion
only barely touches the axis indicates that the region of
unstable phonons is almost vanishingly small, and hence it is
still a good approximation to ignore this bad point and calculate
the free energy as we do for a thermodynamic solid. The good
agreement between the calculated transformation temperatures
and experimental values justifies this procedure.

5
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Figure 5. The phonon DOS for B2 (solid line) and ω′′ (dashed line)
phases at T = 1336 K.

0 0.2 0.4 0.6 0.8 1
WaveVector

0

2

4

6

P
h

o
n

o
n

 E
n

er
g

y 
(m

eV
)

Γ                                                                                            H

Figure 6. The phonon dispersion along [111] for BOT phase at
T = 1336 K.

6.2. ω′′ → (isothermal) B82 transformation

Annealing of the ω′′-phase at 973 K results in another
metastable structure known as B82 (an isothermal, complete
ω phase) [7]. In the B82 structure, the double layers (planes 2–
3 and 5–6 in figure 2(c)) are composed of Ti and Al with all of
the Nb found on the single layers [7]. In figure 2(c), one of the
possible configuration of the B82 is shown. The exchange of
the Nb atoms in the fourth plane with Ti atoms in the first plane
does not create a new configuration due to periodic boundary
condition and translational symmetry of the crystal. Therefore,
one needs to consider a bigger unit cell, and we have therefore
considered possible 12 atom configurations, which involve the
next largest size of unit cell that preserves stoichiometry.

The two lowest energy 12 atom configurations are shown
in figure 7. These distinct configurations are called B82(a) and
(b). The ground state energy calculations show that B82(a) has
4 meV/atom higher energy than B82(b). However, comparison
of the Helmholtz free energy of both structures reveals that the

AlTi Nb

 (a) (b)

Figure 7. (Color online) The two different atomic configurations of
the B82 structure with the lowest ground state energies.
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Figure 8. The total free energy difference between B82(a) and (b)
structures. The calculated transition temperature is at 982 K. The
B82(a) configuration is stable above the transition temperature while
B82(b) is more stable below 982 K.

B82(a) structure is more stable above 982 K (figure 8). The
phonon density of the states is shown in figure 9. One can see
a major change in the low energy region of the phonon density
of states while the high energy region is not affected. This can
be easily explained in terms of the chemical bonding between
the atoms. The B82(a) structure has more Ti–Nb bonds with
respect to the (b) structure. It is known that Ti–Nb bond is
the weakest bond in Ti–Al–Nb system [32, 50]. Therefore, by
rearranging the atomic configurations from B82(a) to (b) the
weak Ti–Nb bonds are replaced by more stable Ti–Ti and Nb–
Nb bonds that results in a shift to higher frequencies.

At 982 K, both structures have the same energy and
one needs to include the contribution of the configurational
entropy from both configurations to the total free energy of
the system. Assuming that these are the only important
configurations, the configurational contribution to the free
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Figure 9. The phonon DOS for B82 (a) (solid line) and (b) (dashed
line) phases at T = 982 K.

energy is equal to −T Sconfig = −KBT ln2/12 per atom. Note
that this contribution is only included at T = 982 K where
both structures are degenerate. In figure 10 the free energy
difference between the ω′′ and B82s without contribution
of configurational entropy is depicted. We see from this
figure that ω′′ is more stable than B82(a) structure at all
temperatures while B82(b) is slightly stable below 115 K
by only 0.2 meV/atom. However, when the configurational
entropy is included, the ω′′-phase is more stable than B82

structure by only 0.2 meV/atom at 982 K which is very small
number and within the error of our calculations. It is important
to mention that we cannot find similar degeneracy for ω′′-
phase within the 12 atom cell configuration. Consequently, we
predict 982 K as the transformation temperature for ω′′ → B82

which is in excellent agreement with the measured value of
973 K [51].

6.3. B2 → (isothermal) B82 transformation

The direct equilibrium transformation of B2 → B82 without
the formation of the intermediate trigonal phase can only
occur by a reconstructive transformation. In fact, during the
cooling the BOT phase transform into the isothermal ω-phase
at 1046 K [51]. Calculated transformation temperatures from
BOT to B82(a) and (b) (figure 11) are 1061 and 1049 K,
respectively which are in excellent agreement with experiment.

7. Conclusions

We have performed first-principles calculations to study the
stability of the underlying bcc, ω′′, and B82 structures of
the Ti3Al2Nb system. The various contributions to the free
energy of different metastable phases are calculated. The
vibrational free energy is obtained from first-principles in
the quasiharmonic approximation. The electronic entropy
contribution to the free energy for all of the phases is
calculated. The phonon density of states for each structure
at transition temperatures is calculated. Predicted transition
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Figure 10. The difference between the total free energies of
ω′′-phase with B82(a) (solid line) and B82(b) (dashed line). The
square indicates the free energy difference when configurational
entropy is included.
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Figure 11. The difference between the total free energies of BOT
and B82(a) (solid line) and B82(b) (dashed line) as a function of the
temperature.

temperatures and lattice parameters for different phases are in
excellent agreement with experiment.

It is confirmed that BOT → B82 transformation can
be obtained from two different transition sequences. In the
first sequence, in the first step the B2 matrix transforms to
an intermediate trigonal phase. This is a subgroup transition
during the cooling, with displacive mode which produces
a metastable intermediate phase ω′′. It is shown that the
high temperature underlying bcc structure is stabilized by low
frequency phonons. The second step involves a supergroup
transition during the prolonged annealing with replacive mode
and chemical ordering, which produces the equilibrium B82

phase from the ω′′-phase. The site occupancies which are
different in ω′′ become identical in B82, and this implies an
increase in configurational entropy. It is verified that the
configurational entropy is indeed the major factor in this step
of the transition. We showed that the underlying bcc structure

7



J. Phys.: Condens. Matter 20 (2008) 465206 M Sanati et al

is stabilized by excess vibrational entropy against ω′′ and
B82 phases. It was also shown that for the ω′′ → B82

transformation it is necessary to include the configurational
entropy. In the second sequence, the direct BOT →
B82 transformation occurs by a reconstructive transformation
without the formation of the intermediate ω′′-phase.
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